在突发模式下工作时,输出电压的纹波更大。相比在正常工作条件下由开关频率设置的电压纹波,其频率要低得多。根据电压转换器IC和电路条件,在突发阶段操作时,通常会存在极少量的脉冲,例如,一个脉冲或大量脉冲。通常,在输出电压达到设定的上限阈值之前,会产生尽可能多的脉冲。之后会暂停一段时间,直到输出电压降到低于阈值下限。在这种情况下,在脉冲期间,仍然会按照选定的开关频率进行开关,但由突发阶段定义的更低的频率和暂停阶段也会出现在频谱中。
脉冲跳频模式
另一种模式是脉冲跳频模式。许多类型的功率转换器都提供这种模式。在许多拓扑设计中,开关节点上每出现一次脉冲时,会有一定量的电能基于正常的最低导通时间从功率转换器的输入端移动到输出端。但是,如果在这时候,负载不需要或只需要很少量的电能,输出电压会上升。一些脉冲会被跳过,以防输出电压上升过多。此时,输出电压的电压纹波也会增大。脉冲跳频模式通常由反馈节点上的过压比较器激活。例如,如果跳过每秒脉冲,即可在频谱中看到相当于设置开关频率一半的开关频率(FFT表示法)。
型号:967354-1 汽车连接器
产品属性 属性值 选择属性
制造商: TE Connectivity
产品种类: 汽车连接器
RoHS: 详细信息
产品: Housings
附件类型: -
位置数量: 9 Position
型式: Receptacle (Female)
颜色: Black
封装: Bulk
商标: TE Connectivity / AMP
描述/功能: 2.5 mm BU-GEH KPL Housing
外壳材料: Polyamide (PA)
排数: 2 Row
产品类型: Automotive Connectors
144
子类别: Automotive Connectors
开关电源不同于线性电源,开关电源利用的切换晶体管多半是在全开模式(饱和区)及全闭模式(截止区)之间切换,这两个模式都有低耗散的特点,切换之间的转换会有较高的耗散,但时间很短,因此比较节省能源,产生废热较少。理想上,开关电源本身是不会消耗电能的。电压稳压是通过调整晶体管导通及断路的时间来达到。相反的,线性电源在产生输出电压的过程中,晶体管工作在放大区,本身也会消耗电能。开关电源的高转换效率是其一大优点,而且因为开关电源工作频率高,可以使用小尺寸、轻重量的变压器,因此开关电源也会比线性电源的尺寸要小,重量也会比较轻。若电源的高效率、体积及重量是考虑重点时,开关电源比线性电源要好。不过开关电源比较复杂,内部晶体管会频繁切换,若切换电流尚未加以处理,可能会产生噪声及电磁干扰影响其他设备,而且若开关电源没有特别设计,其电源功率因数可能不高。
具有固定开关频率的开关电源,也并非总是显示连续的脉冲。在某些情况下,由于各种原因,脉冲会被忽略。在考虑输出纹波电压和EMI效应时,这一点非常重要。
用于电压转换的开关稳压器通常采用可调的或固定的开关频率。这个值通常在开关稳压器IC数据手册的第一页列出。对于电源电路来说,开关频率的选择是很重要的,因为它会影响到外部无源器件的尺寸和成本。此外,开关频率还会影响可实现的转换效率。对于整个电路(不仅是功率转换器,还包括系统中的其他电路部分),开关频率的选择也非常重要。ADI通常在整个系统受干扰最小的频率范围内选择开关频率。受印刷电路板的寄生效应影响,电源的开关频率通常通过电容和电感耦合方式与电路的许多部分耦合。